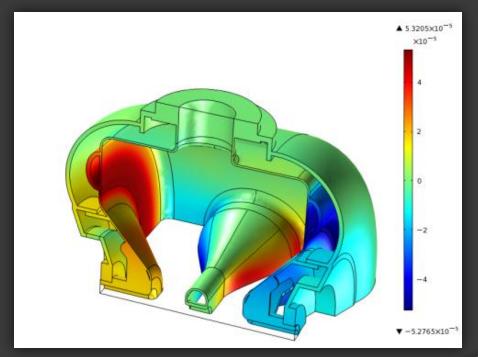


SSR1 Tuner studies

(work in progress)

L. Ristori

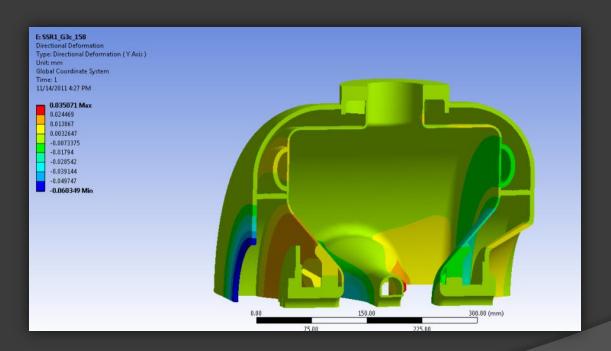
With slides from I. Gonin, M. Hassan and D. Passarelli



Overview

- Reduce the sensitivity to He pressure fluctuations of the system cavity+vessel+tuner.
- Allow access for maintenance to motor and piezos through access port
 - move piezos away from beam pipe
- Guarantee an acceptable tuning efficiency (stroke of beam pipe / stroke of motor+piezos, >50%).
 - High rigidity of tuner and/or low rigidity of cavity
 - Mechanical advantage as close to 1:1 as possible (we had 1:5 in the prototype)
- Guarantee an acceptable tuning Range (+/- 200 kHz)
 - Avoid yield
 - Limit the forces required

- Cavity + vessel design was developed for df/dP≈0
- The movable beam pipe (left in picture) was left free (conservative approach).
- Comsol multiphysics df/dp ~ 4.9 Hz/Torr
- Ansys multiphysics df/dp ~ -1 Hz/Torr
- Ansys mechanical
- df/dp ~ 2.6 Hz/Torr


 A Ring couples the cavity end walls with the helium vessel end walls.

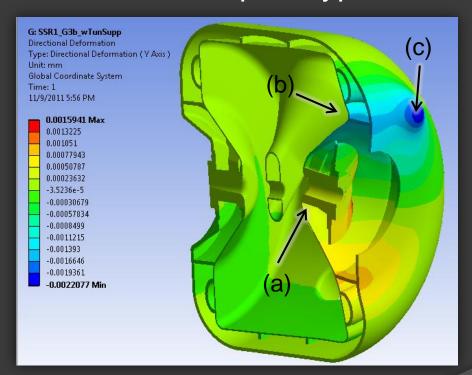
- The Diameter of the Ring has influence on several aspects.
- Of major importance is the robustness of the df/dP value, how stable it is for small variations of the actual cavity+vessel shape.
- We can predict (Passarelli) the df/dP value by looking at the deformations of the helium vessel at the connection points with the cavity (here called dRing and dBP).
- Ring D=125 mm, df/dP= -0.20 dRing 0.53 dBP + 23 (Hz/torr)
- Ring D=140 mm, df/dP= -0.18 dRing 0.52 dBP + 21 (Hz/torr)
- \odot Ring D=158 mm, df/dP= -0.01 dRing 0.29 dBP + 8.5 (Hz/torr)
- Lower coefficients for deformations at the Ring and Beam Pipe give a more stable df/dP
- A larger Ring Diameter is favorable in this case

- Study with Ring D = 158 mm
- Df/dP = 5 Hz/torr (free BPs), 7 Hz/torr (fixed BPs)
 - And df/dP = -0.01 dRing 0.29 dBP + 8.5 (Hz/torr)
- A Larger ring also reduces the stiffness of the cavity to tuning.

Deformations induced on the cavity+vessel with ring D=158 mm, due to 1 atm He pressure.

Beam pipes deformations in the order of few µm.

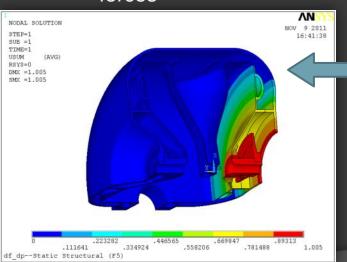
- If we introduce a tuner similar to the lever prototype, the cavity deforms in an unwanted way.
- The G3 vessel is more flexible than the prototype

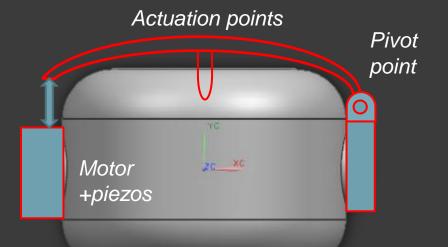


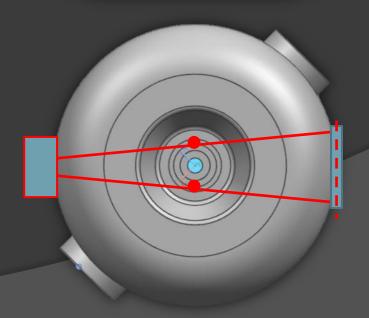
A: tuning forces on cavity

B: motor reaction forces

C: pivoting point reaction forces




When subject to an arbitrary tuning force, the beam pipe area appears to rotate (a) more than translate.


Also, the end-wall shape is distorted (b) due to the reactions on the vessel wall (c)

- If we change the leverage layout for the tuner:
 - Translation of Beam Pipe
 - Mechanical advantage reduced to 1:2 (lower is better for piezo stroke requirements)
 - Reduced stiffness of cavity (increased tuning efficiency)
 - Vessel wall and cavity wall move in the same direction, the reaction forces do not "fight" the tuning forces

Ahead:

- Optimal diameter for the Ring, can we place it on top of the donut rib (how large can it be) before we see the df/dP diverging to negative values?
 - Easier welding
 - Lower stiffness to tuning
- Tuning forces on cavity+vessel, do they alter the df/dP?
 - If yes, can we minimize this effect by design?
- Tuner design
 - Identify the optimal interface locations
 - Evaluate the required stiffness of the lever arm to guarantee an acceptable tuning efficiency (beam pipe stroke/ motor+piezo stroke)